Premium Solid Forged Steel Parts for Industry Agriculture Pumping

Product Details
Customization: Available
Processing Object: Metal
Molding Style: Forging
Still deciding? Get samples of US$ 200/Piece
Request Sample
Diamond Member Since 2024

Suppliers with verified business licenses

Audited Supplier

Audited by an independent third-party inspection agency

Fast Delivery
The supplier can deliver the goods within 15 days
Low MOQ
The MOQ for the supplier's products is 1
High Repeat Buyers Choice
More than 50% of buyers repeatedly choose the supplier
Raw Materials Reports
The supplier has Raw Materials reports, including:
Test Report
to see all verified strength labels (18)
  • Premium Solid Forged Steel Parts for Industry Agriculture Pumping
  • Premium Solid Forged Steel Parts for Industry Agriculture Pumping
  • Premium Solid Forged Steel Parts for Industry Agriculture Pumping
  • Premium Solid Forged Steel Parts for Industry Agriculture Pumping
  • Premium Solid Forged Steel Parts for Industry Agriculture Pumping
  • Premium Solid Forged Steel Parts for Industry Agriculture Pumping
Find Similar Products
  • Overview
  • Company Profile
  • A GUIDE TO FORGING PARTS
  • COLD FORGING VS HOT FORGING
  • HOT FORGING
  • APPLICATION
  • Detailed Photos
Overview

Basic Info.

Model NO.
FG004
Molding Technics
Hot Forging
Application
Auto Parts
Material
Steel
Heat Treatment
Tempering
Surface Treatment
Sand Blasting
Forging Tolerance
+/-0.5mm
Standard
ASME
Mateiral
Steel Alloy, Carbon Steel, Ss, Brass, Aluminum
Logo
Customize Available
Size
Customize Available
Drawing Format
3D, Pdf, CAD...
Transport Package
Carton, Wooden Box
Specification
customized as drawing, specification
Trademark
DXCMC
Origin
China
HS Code
7308900000
Production Capacity
5000000 Tons Per Year

Product Description

Premium Solid Forged Steel Parts for Industry Agriculture PumpingPremium Solid Forged Steel Parts for Industry Agriculture PumpingPremium Solid Forged Steel Parts for Industry Agriculture PumpingPremium Solid Forged Steel Parts for Industry Agriculture PumpingPremium Solid Forged Steel Parts for Industry Agriculture PumpingPremium Solid Forged Steel Parts for Industry Agriculture PumpingPremium Solid Forged Steel Parts for Industry Agriculture PumpingPremium Solid Forged Steel Parts for Industry Agriculture PumpingPremium Solid Forged Steel Parts for Industry Agriculture PumpingPremium Solid Forged Steel Parts for Industry Agriculture PumpingPremium Solid Forged Steel Parts for Industry Agriculture Pumping
Company Profile

Botou Casting Machinery Factory, former of Cangzhou Metallic Crafts Co., Ltd,  is located in the casting & forging industrial town of Botou in Hebei province of China, 200km far away from Beijing.  Factory is overy 30 years in the custom forging industry. As a traditional forging  manufacturer, we are not only learn other experience, but also pay more attention to bring in the new technique and machine. We are pleasent to develop & improve us to  satisfy with the market's demand.

A GUIDE TO FORGING PARTS

Although forging is one of the oldest methods of metalworking, it remains one of the most effective to this day. At its core, forging is the process of forming raw metal without allowing the material to completely melt. The metal remains in a solid state while an operator performs any combination of forming techniques such as hammering, rolling, or pressing. While there are many variations of forging-each with their own distinct advantages-most involve heating the workpiece to very high temperatures to facilitate these shaping processes.

Compared to casting or other metalworking techniques, forging yields the most desirable physical characteristics-including a very high degree of tensile strength-at an attractive price-point. These beneficial properties primarily come from changes to the metal's grain. Since the material is never melted, the percussive or compressive forces applied during forging force the grain to follow the flow of the finished product. This creates components that are far stronger than their machined and casted counterparts.

CMC Forge makes these advantages accessible to clients across industries, offering a full range of skilled forging services that meet the needs of myriad applications.

THE FORGING PROCESS

There are many subtypes of the broader forging process, so the exact steps involved in forming a product may vary. Most procedures, however, will follow the same general outline.

  • Forging relies on the use of dies to compress and shape metal, so it's critical to determine what set of tools will be most effective to achieve the desired shape. In many cases, custom die design will be necessary to ensure that the final product aligns exactly to expectations. For larger production runs, this step might include the design and production of multiple dies designed for flattening, forming, or cutting.
  • Once planning and toolmaking have been completed, the actual metalworking can begin. First, the billet, or workpiece needs to be cut to size. Once cut, it must then be heated to the proper temperature. Once heated, the billet is ready to be formed.
  • At this point, the various forging methods begin to diverge. Depending on the process chosen, the billet may be heated and pressed between two dies or inserted into a molded cavity and compressed. In some cases, the operator will leave the billet at room temperature and work it manually with hammers in a process called cold forging.
  • Finally, there may be some necessary finishing procedures. For instance, some dies will produce flashing that must be trimmed.
COLD FORGING VS HOT FORGING

 

There are two main types of forging - hot forging and cold forging. Hot forging and cold forging are two different metal forming processes that deliver similar results.

Hot forging requires the metal to be heated above its recrystallization temperature. This can mean heating metals up to 2,300 degrees Fahrenheit. The main benefit of hot forging is the decrease in energy required to form the metal properly. This is because excessive heat decreases yield strength and improves ductility. Hot forged products also benefit from the elimination of chemical inconsistencies.

Cold forging typically refers to forging a metal at room temperature, though any temperature below recrystallization is possible. Many metals, such as steel high in carbon, are simply too strong for cold forging. Despite this hindrance, cold forging does edge out its warmer equivalent when it comes to standards of dimensional control, product uniformity, surface finish and contamination. Cold forging encompasses numerous techniques, including bending, extruding, cold drawing and cold heading. However, this increased versatility comes at a cost, because cold forging requires more powerful equipment and may call for the use of intermediate anneals.



ADVANTAGES

 

  • Maintain grain flow of the metal
  • Retain the strength of metal
  • Elimination of defects, inclusions and porosity.
  • Relative low costs
  • High production output


 

HOT FORGING

provides superior quality hot forging parts and components for a wide range of industries including automotive, food dairy, machinery, medical, plumbing, watering, mining, petrochemical, electrical, energy, aerospace, submarine and others.

Hot forging is known to produce some of the strongest manufactured parts and components compared to other metal manufacturing processes. We produce hot forging parts and components from a few grams to more than a few hundred kilograms. For hot forging parts with special surface finish requirements, we provide a broad range of secondary operation including machining, surface finishing, etc.

 

What Is Hot Forging?

Hot forging requires the metal to be heated above its recrystallization temperature. This allows for the flow stress and energy required to form the metal to lower, effectively increasing the rate of production (or strain rate). Hot forging aids in making the metal easier to shape as well as less likely to fracture.

Iron, along with its alloys, are almost always hot forged for two main reasons: #1) If work hardening progresses, hard materials (such as steel and iron) will become more difficult to work with, and #2) It is a more economical option to hot forge metals such as steel and then follow with heat treatment processes as metals such as steel can be strengthened through other processes (and not necessarily just cold working processes).

Average temperatures for hot forging includes: Aluminum (Al) Alloys - 360° (680°F) to 520°C (968°F); Copper (Cu) Alloys - 700°C (1 292°F) - 800°C (1 472°F); Steel - up to 1 150°C (2 102°F)

 
 
 

How are Hot Forgings Made?

During hot forging, the temperature reaches above the recrystallization point of the formed metal. As the step of plastically deforming the metal above the recrystallization temperature, these high temperatures are required in order to avoid strain hardening during deformation. This process typically involves heating the metal (above its recrystallization point) and then comminuting it into a mold that can also be heated as needed. Because the metal is hot, it is easy to "move" and enables manufacturers to make more complex shapes than cold forging.

For superalloys, which have low malleability, processes such as isothermal forging (deformation in a controlled atmosphere) are used to avoid oxidation. Isothermal forging, also known as hot forging, is a thermal processing process that keeps a workpiece at its maximum temperature throughout the forming process.

Maintaining this temperature is done by heating the mold - it will be at an elevated or slightly lower temperature of the workpiece. The force applied by the mold forms the workpiece, and because the mold is also at an elevated temperature, the cooling of the workpiece between the mold working interfaces is eliminated. This in turn leads to an improvement in the flow properties of the metal (work piece).

 

Advantages of Hot Forging

  • Increased ductility
  • Complex shapes
  • High precision
  • Cost benefit
  • Enhanced stiffness
  • Size: 1 in to 30 in
  • Weight: Ounces to more than 100 pounds
 
 
 
APPLICATION

 

Material Characteristics Application
Stainless Steel Corrosion-resistant
  • Used in steam turbines, pressure vessels, and other applications in petrochemical, medical, food processing industries.
  • Used at temperatures up to 1800 F under low stress and to 1250 F under high-stress.
Low Carbon and Low Alloy Steel Easily processed
Good mechanical properties
Low material cost
  • Widely used at temperature lower than 900 F.
HSLA/Microalloy Steel Good mechanical properties
Low material cost
Simple thermomechanical treatment
  • Mainly used at temperature lower than 400 F for structural and engine applications in the aircraft and transportation industries. 
Aluminum Good strength-to-weight ratio
Readily forged
  • Mainly used at temperature lower than 400 F for structural and engine applications in the aircraft and transportation industries. 
Aluminum A356.0 Good strength-to-weight ratio
Readily forged
  • Mainly used at temperature lower than 400 F for structural and engine applications in the aircraft and transportation industries. 
Nickel-Base Superalloy Oxidation resistance
Creep-rupture strength
  • Used at temperature between 1200 and 1800 F.
  • Used for structural shapes, turbine components, fittings, and valves. 
Titanium High strength
Low density
Excellent corrosion resistance
  • About 40% lighter in weight compared to steel parts.
  • Used primarily in the temperature services to 1000 F. 
  • Used for aircraft engine components and structures, ship components, and valves and fitting in transportation and chemical industries.



Secondary Operations and Heat Treatment of Hot Forging We Offer

  • High precision machining
  • Punching, drilling, tapping, bending, milling
  • Painting, anodizing, black oxide, powder coating
  • Heat treatment
Detailed Photos

 

Send your message to this supplier

*From:
*To:
*Message:

Enter between 20 to 4,000 characters.

This is not what you are looking for? Post a Sourcing Request Now
Contact Supplier